Inērcijas mōmentas tensōrs

Iz Prūsiska Wikipēdija
Sākais en: nawigaciōni, laukīsna

Inērcijas mōmentas tensōrs - bilineārs tensōrs, kawīds ebpeisāi inērcijas mōmentan per eraīnan assin praēntin pra dātan deīktan. Turīntei inērcijas tensōran per aīnan deīktan mazīngi gīrbautun di per eraīnan kittan deīktan pra Steineras gērdausenin, stesse paggan ukadeznimai ast dātan per massis sirdan.

Definiciōni

Inērcijas mōmentas tensōrs I ast definītan kāigi:

I \ \stackrel{\mathrm{def}}{=}\  \int\limits _{V} \rho(x,y,z) (I - r r^T)dV\,

be sejja lunkis dīwan \vec{\omega} sen welsnas impulss \vec{L}:

\vec{L}=\hat{I}\vec{\omega }

En ensadīntai bāzin tensōrs ast pertreptan pra simetriskan, pōzitiwan matricin. Tenesses diagōnalas elamēntis ast inērcijas mōmentai relatīwai bāzis asimmans be ast definītan kāigi:

I_{xx} = \int\limits_{V} \rho(x,y,z) (y^{2}+z^{2})dV
I_{yy} = \int\limits_{V} \rho(x,y,z) (z^{2}+x^{2})dV
I_{zz} = \int\limits_{V} \rho(x,y,z) (x^{2}+y^{2})dV

perdiagōnalas elamēntis ast bilītan dewiaciōnis elamēntis be ast definītan sen fōrmulins:

I_{xy} = I_{yx} = - \int\limits_{V} \rho(x,y,z) xy dV
I_{yz} = I_{zy} = - \int\limits_{V} \rho(x,y,z) yz dV
I_{zx} = I_{xz} = - \int\limits_{V} \rho(x,y,z) zx dV

Diagōnala pertrepsnā

Beggi matrici ast simetriskan, ekzistijja bāzi, kwēi inērcijas mōmentas tensōras matrici ast diagōnalin. Šisses bāzis assis ast bilītan per galwas assins adder diagōnalas wērtibis (inērcijas mōmentas relatīwai šēimans assins) ast bilītan per galwas mōmentans.

Balancināntei kellin adder nuskilin, stenge di nullintun dewiaciōnis mōmentans, kāi welsnas ass būlai kellas galwas ass. Kaddan welsnas ass ni ast galwas ass, staddan welsnas impulsas wektōrs ni ast parallalin prei welsnas assin be wella zūrgi din, dīlinantei laztans pabrandīnsnan.

En kitēimans billins
Persōniskas pagaptis